Though climate change and its adverse ecological and geohydrological impacts are being experienced across the world in all types of ecosystems but as far as the Himalaya mountain ecosystem is concerned, the rate of climate change and subsequent impacts have reached an alarming stage due to anthropogenic and technogenic intervention on natural process and now need most effective and less time taking management strategy. Addressing this burning environmental problem, a geospatial artificial intelligence (GeoAI) technique-based case study is presented here from one of the most densely populated and urbanized regions of Himalaya mountain, viz Uttarakhand Himalaya, which is also called central Himalaya. The results of the study suggest that due to quite a high rate of climate change, the climatic zones shifting towards higher altitudes at the average rate of 5.6 2 m/year, causing several adverse ecological impacts in terms of decreasing quality dense temperate forest cover (0.05%/year), snow cover (0.02%/year), water bodies (0.01%/year), agricultural land (0.31%/year), and horticultural land (0.01%/year). Conversion of these eco-friendly land use land cover into barren land, fallow land, and built-up land causes geohydrological consequences of climate change in terms of decreasing rainy days (1%/year), drying perennial springs (0.20%/year), perennial streams (0.11%/year), decreasing spring and stream discharge during non-monsoon season, increased extreme rainfall events (6-8%/year), and subsequent surface runoff during monsoon season. Further, the study advocates that the degraded geohydrological process has resulted in an increased frequency of disaster events (floods, cloudbursts, landslides. etc.) with a 3% (12 events) annual rate, causing great loss of environment, infrastructure, lives, and economy each year. Therefore, it has been very urgent to mitigate climate change and increase geohydrological disaster events through an integrated approach. Keep in view this, the present study proposed an integrated watershed management plan which is equally useful to be implemented across the Himalaya region and other similar ecosystems across the world.
Keywords: Climate change; Ecological degradation; Hydrological degradation; Increased disasters; UK Himalaya.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.