L-tyrosine is a recognized biomarker of albinism, whose endogenous level in human bodies is directly linked to melanin synthesis while no attention has been paid to its specific diagnosis. To this end, we have developed an electrochemical point-of-care testing device based on a molecularly imprinted gel prepared by a universal paradigm shift design to achieve the enhanced specific recognition of the L-tyrosine. Interestingly, this theoretically optimized molecularly imprinted gel validates the recognition pattern of L-tyrosine and optimizes the structure of the polymer itself with the aid of computational chemistry. Besides, modified extended-layer MXene and Au nanoclusters have significantly improved the sensing activity. As a result, the linear diagnostic range of this electrochemical point-of-care testing device for L-tyrosine is 0.1-100 μM in actual human fluids, which fully covers the L-tyrosine levels of healthy individuals and people with albinism. The diagnosis is completed in 90 s and then the results are transmitted by Bluetooth low energy to the smart mobile terminal. Therefore, we are convinced that this electrochemical point-of-care testing device is a promising tool in the future smart medical system.
Keywords: Biomarkers of albinism; L-tyrosine diagnosis; Molecularly imprinted gel; Paradigm shift designs; Point-of-care testing device.
Copyright © 2024. Published by Elsevier B.V.