Physiological presentation and risk factors of long COVID in the UK using smartphones and wearable devices: a longitudinal, citizen science, case-control study

Lancet Digit Health. 2024 Sep;6(9):e640-e650. doi: 10.1016/S2589-7500(24)00140-7. Epub 2024 Aug 12.

Abstract

Background: The emergence of long COVID as a COVID-19 sequela was largely syndromic in characterisation. Digital health technologies such as wearable devices open the possibility to study this condition with passive, objective data in addition to self-reported symptoms. We aimed to quantify the prevalence and severity of symptoms across collected mobile health metrics over 12 weeks following COVID-19 diagnosis and to identify risk factors for the development of post-COVID-19 condition (also known as long COVID).

Methods: The Covid Collab study was a longitudinal, self-enrolled, community, case-control study. We recruited participants from the UK through a smartphone app, media publications, and promotion within the Fitbit app between Aug 28, 2020, and May 31, 2021. Adults (aged ≥18 years) who reported a COVID-19 diagnosis with a positive antigen or PCR test before Feb 1, 2022, were eligible for inclusion. We compared a cohort of 1200 patients who tested positive for COVID-19 with a cohort of 3600 sex-matched and age-matched controls without a COVID-19 diagnosis. Participants could provide information on COVID-19 symptoms and mental health through self-reported questionnaires (active data) and commercial wearable fitness devices (passive data). Data were compared between cohorts at three periods following diagnosis: acute COVID-19 (0-4 weeks), ongoing COVID-19 (4-12 weeks), and post-COVID-19 (12-16 weeks). We assessed sociodemographic and mobile health risk factors for the development of long COVID (defined as either a persistent change in a physiological signal or self-reported symptoms for ≥12 weeks after COVID-19 diagnosis).

Findings: By Aug 1, 2022, 17 667 participants had enrolled into the study, of whom 1200 (6·8%) cases and 3600 (20·4%) controls were included in the analyses. Compared with baseline (65 beats per min), resting heart rate increased significantly during the acute (0·47 beats per min; odds ratio [OR] 1·06 [95% CI 1·03-1·09]; p<0·0001), ongoing (0·99 beats per min; 1·11 [1·08-1·14]; p<0·0001), and post-COVID-19 (0·52 beats per min; 1·04 [1·02-1·07]; p=0·0017) phases. An increased level of historical activity in the period from 24 months to 6 months preceding COVID-19 diagnosis was protective against long COVID (coefficient -0·017 [95% CI -0·030 to -0·003]; p=0·015). Depressive symptoms were persistently elevated following COVID-19 (OR 1·03 [95% CI 1·01-1·06]; p=0·0033) and were a potential risk factor for developing long COVID (1·14 [1·07-1·22]; p<0·0001).

Interpretation: Mobile health technologies and commercial wearable devices might prove to be a useful resource for tracking recovery from COVID-19 and the prevalence of its long-term sequelae, as well as representing an abundant source of historical data. Mental wellbeing can be impacted negatively for an extended period following COVID-19.

Funding: National Institute for Health and Care Research (NIHR), NIHR Maudsley Biomedical Research Centre, UK Research and Innovation, and Medical Research Council.

MeSH terms

  • Adult
  • Aged
  • COVID-19* / epidemiology
  • Case-Control Studies
  • Female
  • Humans
  • Longitudinal Studies
  • Male
  • Middle Aged
  • Post-Acute COVID-19 Syndrome*
  • Risk Factors
  • SARS-CoV-2
  • Smartphone*
  • United Kingdom / epidemiology
  • Wearable Electronic Devices*