Main-Group Metal-Nonmetal Dynamic Proton Bridges Enhance Ammonia Electrosynthesis

Angew Chem Int Ed Engl. 2024 Nov 4;63(45):e202412426. doi: 10.1002/anie.202412426. Epub 2024 Sep 20.

Abstract

The electrochemical nitrogen reduction reaction (eNRR) is a crucial process for the sustainable production of ammonia (NH3) for energy and agriculture applications. However, the reaction's efficiency is highly dependent on the activation of the inert N≡N bond, which is hindered by the electron back-donation to the π* orbitals of the N≡N bond, resulting in low eNRR capacity. Herein, we report a main-group metal-nonmetal (O-In-S) eNRR catalyst featuring a dynamic proton bridge, with In-S serving as the polarization pair and O functioning as the dynamic electron pool. In situ spectroscopic analysis and theoretical calculations reveal that the In-S polarization pair acts as asymmetric dual-sites, polarizing the N≡N bond by concurrently back-donating electrons to both the πx* and πy* orbitals of N2, thereby overcoming the significant band gap limitations, while inhibiting the competitive hydrogen evolution reaction. Meanwhile, the O dynamic electron pool acts as a "repository" for electron storage and donation to the In-S polarization pair. As a result, the O-In-S dynamic proton bridge exhibits exceptional NH3 yield rates and Faradaic efficiencies (FEs) across a wide potential window of 0.3 V, with an optimal NH3 yield rate of 80.07±4.25 μg h-1 mg-1 and an FE of 38.01±2.02 %, outperforming most previously reported catalysts.

Keywords: asymmetric dual-sites; dynamic proton bridge; electrocatalysis; nitrogen reduction reaction; polarization pair.