The chemical UV filter 2-ethylhexyl salicylate (EHS) is used in various personal-care products. The dermal and oral metabolism of EHS have already been targeted by different studies. However, toxicokinetic data after a single dermal exposure to EHS was missing. In our study, three volunteers were dermally exposed to a commercial EHS-containing sunscreen for 9 h with an application dose of 2 mg sunscreen per cm2 body surface area. The exposure was performed indoors, and sunscreen was applied on about 75% of the total skin area. Complete urine voids were collected over 72 h and eight blood samples were drawn from each subject. Urine samples were analyzed for EHS and seven known metabolites (5OH-EHS, 4OH-EHS, 2OH-EHS, 6OH-EHS, 4oxo-EHS, 5oxo-EHS, and 5cx-EPS) by online-SPE UPLC MS/MS. The peaks of urinary elimination occurred 10-11 h after application. The elimination half-lives (Phase 1) were between 6.6 and 9.7 h. The dominant urinary biomarkers were EHS itself, followed by 5OH-EHS, 5cx-EPS, 5oxo-EHS, and 4OH-EHS. 2OH-EHS, 6OH-EHS, and 4oxo-EHS were detected only in minor amounts. An enhanced analysis of conjugation species revealed marginal amounts of unconjugated metabolites and up to 40% share of sulfate conjugates for 5OH-EHS, 5oxo-EHS, and 5cx-EPS. The results demonstrated a delayed systemic resorption of EHS via the dermal route. Despite an extensive metabolism, the parent compound occurred as main urinary parameter. The delayed dermal resorption as well as the slow elimination of EHS indicate an accumulation up to toxicological relevant doses during daily repeated dermal application to large skin areas.
Keywords: Human biomonitoring; Metabolism; Phase II conjugates; Plasma; UV filter; Urine.
© 2024. The Author(s).