Telomere-led rapid chromosome movements (RPMs) are a conserved characteristic of chromosome dynamics in meiosis. RPMs have been suggested to influence critical meiotic functions such as DNA repair and the association of the homologous chromosomes. Here, we describe a method using 3D time-lapse fluorescence imaging to monitor RPMs in Hoechst-stained mouse seminiferous tubules explants. We supplement visualization with customized quantitative motion analysis and in silico simulation. The ability to carry out live imaging, combined with quantitative image analysis, offers a sensitive tool to investigate the regulation of RPMs, chromosome reorganizations that precede dynamic mid-prophase events, and their contribution to faithful transmission of genetic information.
Keywords: Chromosome dynamics; Microscopy; Mouse gametogenesis; Spermatocyte; Telomere-led rapid prophase movements.
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.