COL6A3 Exosomes Promote Tumor Dissemination and Metastasis in Epithelial Ovarian Cancer

Int J Mol Sci. 2024 Jul 25;25(15):8121. doi: 10.3390/ijms25158121.

Abstract

Our study explores the role of cancer-derived extracellular exosomes (EXs), particularly focusing on collagen alpha-3 (VI; COL6A3), in facilitating tumor dissemination and metastasis in epithelial ovarian cancer (EOC). We found that COL6A3 is expressed in aggressive ES2 derivatives, SKOV3 overexpressing COL6A3 (SKOV3/COL6A3), and mesenchymal-type ovarian carcinoma stromal progenitor cells (MSC-OCSPCs), as well as their EXs, but not in less aggressive SKOV3 cells or ES2 cells with COL6A3 knockdown (ES2/shCOL6A3). High COL6A3 expression correlates with worse overall survival among EOC patients, as evidenced by TCGA and GEO data analysis. In vitro experiments showed that EXs from MSC-OCSPCs or SKOV3/COL6A3 cells significantly enhance invasion ability in ES2 or SKOV3/COL6A3 cells, respectively (both, p <0.001). In contrast, ES2 cells with ES2/shCOL6A3 EXs exhibited reduced invasion ability (p < 0.001). In vivo, the average disseminated tumor numbers in the peritoneal cavity were significantly greater in mice receiving intraperitoneally injected SKOV3/COL6A3 cells than in SKOV3 cells (p < 0.001). Furthermore, mice intravenously (IV) injected with SKOV3/COL6A3 cells and SKOV3/COL6A3-EXs showed increased lung colonization compared to mice injected with SKOV3 cells and PBS (p = 0.007) or SKOV3/COL6A3 cells and PBS (p = 0.039). Knockdown of COL6A3 or treatment with EX inhibitor GW4869 or rapamycin-abolished COL6A3-EXs may suppress the aggressiveness of EOC.

Keywords: COL6A3; aggressiveness; epithelial ovarian cancer; exosome inhibitor; exosomes; metastasis.

MeSH terms

  • Animals
  • Carcinoma, Ovarian Epithelial* / genetics
  • Carcinoma, Ovarian Epithelial* / metabolism
  • Carcinoma, Ovarian Epithelial* / pathology
  • Cell Line, Tumor
  • Cell Movement
  • Collagen Type VI* / genetics
  • Collagen Type VI* / metabolism
  • Exosomes* / genetics
  • Exosomes* / metabolism
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Mice
  • Mice, Nude
  • Neoplasm Invasiveness
  • Neoplasm Metastasis
  • Ovarian Neoplasms* / genetics
  • Ovarian Neoplasms* / metabolism
  • Ovarian Neoplasms* / pathology

Substances

  • Collagen Type VI
  • COL6A3 protein, human