Ultrasmall nanoparticles (diameter 2 nm) of silver, platinum, and bimetallic nanoparticles (molar ratio of Ag:Pt 0:100; 20:80; 50:50; 70:30; 100:0), stabilized by the thiolated ligand glutathione, were prepared and characterized by transmission electron microscopy, differential centrifugal sedimentation, X-ray photoelectron spectroscopy, small-angle X-ray scattering, X-ray powder diffraction, and NMR spectroscopy in aqueous dispersion. Gold nanoparticles of the same size were prepared as control. The particles were fluorescently labeled by conjugation of the dye AlexaFluor-647 via copper-catalyzed azide-alkyne cycloaddition after converting amine groups of glutathione into azide groups. All nanoparticles were well taken up by HeLa cells. The cytotoxicity was assessed with an MTT test on HeLa cells and minimal inhibitory concentration (MIC) tests on the bacteria Escherichia coli and Staphylococcus xylosus. Notably, bimetallic AgPt nanoparticles had a higher cytotoxicity against cells and bacteria than monometallic silver nanoparticles or a physical mixture of silver and platinum nanoparticles. However, the measured release of silver ions from monometallic and bimetallic silver nanoparticles in water was very low despite the ultrasmall size and the associated high specific surface area. This is probably due to the surface protection by a dense layer of thiolated ligand glutathione. Thus, the enhanced cytotoxicity of bimetallic AgPt nanoparticles is caused by the biological environment in cell culture media, together with a polarization of silver by platinum.
Keywords: antibacterial effects; cytotoxicity; gold; nanoparticles; platinum; silver.