A Study of MgZnO Thin Film for Hydrogen Sensing Application

Materials (Basel). 2024 Jul 25;17(15):3677. doi: 10.3390/ma17153677.

Abstract

This research introduces a hydrogen sensor made from a thin film of magnesium zinc oxide (MgZnO) deposited using a technique called radiofrequency co-sputtering (RF co-sputtering). Separate magnesium oxide (MgO) and zinc oxide (ZnO) targets were used to deposit the MgZnO film, experimenting with different deposition times and power levels. The sensor performed best (reaching a sensing response of 2.46) when exposed to hydrogen at a concentration of 1000 parts per million (ppm). This peak performance occurred with a MgZnO film thickness of 432 nanometers (nm) at a temperature of 300 °C. Initially, the sensor's responsiveness increased as the film thickness grew. This is because thicker films tend to have more oxygen vacancies, which are imperfections that play a role in the sensor's function. However, further increases in film thickness beyond the optimal point harmed performance. This is attributed to the growth of grains within the film, which hindered its effectiveness. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) were employed to thoroughly characterize the quality of the MgZnO thin film. These techniques provided valuable insights into the film's crystal structure and morphology, crucial factors influencing its performance as a hydrogen sensor.

Keywords: MgZnO; RF co-sputtering; gas sensor; hydrogen; thin film.

Grants and funding

This research is funded by the National Science and Technology Council (NSTC) in Taiwan. The project number is NSTC 112–2673–E–168–001–.