The molecular mechanisms that underlie IGHMBP2-related diseases

Neuropathol Appl Neurobiol. 2024 Aug;50(4):e13005. doi: 10.1111/nan.13005.

Abstract

Immunoglobulin Mu-binding protein 2 (IGHMBP2) pathogenic variants result in the fatal, neurodegenerative disease spinal muscular atrophy with respiratory distress type 1 (SMARD1) and the milder, Charcot-Marie-Tooth (CMT) type 2S (CMT2S) neuropathy. More than 20 years after the link between IGHMBP2 and SMARD1 was revealed, and 10 years after the discovery of the association between IGHMBP2 and CMT2S, the pathogenic mechanism of these diseases is still not well defined. The discovery that IGHMBP2 functions as an RNA/DNA helicase was an important step, but it did not reveal the pathogenic mechanism. Helicases are enzymes that use ATP hydrolysis to catalyse the separation of nucleic acid strands. They are involved in numerous cellular processes, including DNA repair and transcription; RNA splicing, transport, editing and degradation; ribosome biogenesis; translation; telomere maintenance; and homologous recombination. IGHMBP2 appears to be a multifunctional factor involved in several cellular processes that regulate gene expression. It is difficult to determine which processes, when dysregulated, lead to pathology. Here, we summarise our current knowledge of the clinical presentation of IGHMBP2-related diseases. We also overview the available models, including yeast, mice and cells, which are used to study the function of IGHMBP2 and the pathogenesis of the related diseases. Further, we discuss the structure of the IGHMBP2 protein and its postulated roles in cellular functioning. Finally, we present potential anomalies that may result in the neurodegeneration observed in IGHMBP2-related disease and highlight the most prominent ones.

Keywords: CMT2S; IGHMBP2; SMARD1; gene expression; neurodegeneration diseases; neuropathy; pathogenesis; respiratory failure.

Publication types

  • Review

MeSH terms

  • Animals
  • Charcot-Marie-Tooth Disease / genetics
  • Charcot-Marie-Tooth Disease / pathology
  • DNA-Binding Proteins* / genetics
  • DNA-Binding Proteins* / metabolism
  • Humans
  • Muscular Atrophy, Spinal* / genetics
  • Muscular Atrophy, Spinal* / pathology
  • Respiratory Distress Syndrome, Newborn / genetics
  • Transcription Factors* / genetics
  • Transcription Factors* / metabolism

Substances

  • DNA-Binding Proteins
  • IGHMBP2 protein, human
  • Transcription Factors

Supplementary concepts

  • Spinal muscular atrophy with respiratory distress 1