Objective: Mechanisms underlying the adolescent-onset and early-onset gout are unclear. This study aimed to discover variants associated with early-onset gout.
Methods: We conducted whole-genome sequencing in a discovery adolescent-onset gout cohort of 905 individuals (gout onset 12 to 19 years) to discover common and low-frequency single-nucleotide variants (SNVs) associated with gout. Candidate common SNVs were genotyped in an early-onset gout cohort of 2,834 individuals (gout onset ≤30 years old), and meta-analysis was performed with the discovery and replication cohorts to identify loci associated with early-onset gout. Transcriptome and epigenomic analyses, quantitative real-time polymerase chain reaction and RNA sequencing in human peripheral blood leukocytes, and knock-down experiments in human THP-1 macrophage cells investigated the regulation and function of candidate gene RCOR1.
Results: In addition to ABCG2, a urate transporter previously linked to pediatric-onset and early-onset gout, we identified two novel loci (Pmeta < 5.0 × 10-8): rs12887440 (RCOR1) and rs35213808 (FSTL5-MIR4454). Additionally, we found associations at ABCG2 and SLC22A12 that were driven by low-frequency SNVs. SNVs in RCOR1 were linked to elevated blood leukocyte messenger RNA levels. THP-1 macrophage culture studies revealed the potential of decreased RCOR1 to suppress gouty inflammation.
Conclusion: This is the first comprehensive genetic characterization of adolescent-onset gout. The identified risk loci of early-onset gout mediate inflammatory responsiveness to crystals that could mediate gouty arthritis. This study will contribute to risk prediction and therapeutic interventions to prevent adolescent-onset gout.
© 2024 American College of Rheumatology.