The incidence of hyperuricemia (HUA) shows a gradually increasing trend towards affecting younger individuals, and it can significantly harm the overall health status of the body. Based on a metabolomics perspective, this study reveals the mechanism of the uric acid-lowering action of Prunus salicina Lindl. cv. "furong" polyphenols (PSLP) on a hyperuricemia mouse model induced by hypoxanthine and potassium oxybutyrate. The results demonstrate that PSLP comprise an effective treatment strategy for reducing the levels of serum uric acid (SUA), serum creatinine (SCr) and blood urea nitrogen (BUN) in HUA mice (p < 0.05), wherein the maximum decrease rates are up to 44.50%, 29.46%, and 32.95%, respectively. PSLP are observed to exert a pronounced inhibitory effect on the activities of xanthine oxidase (XOD) and adenosine deaminase (ADA) in the livers of HUA mice, with reductions of up to 16.36% and 20.13%, respectively. These findings illustrate that PSLP exert a significant uric acid-lowering effect. Subsequent metabolomic analysis of mouse serum identified 28 potential biomarkers for hyperuricemia, whose levels were markedly diminished by PSLP. This process involved alterations in purine, glycine, the pentose phosphate pathway, and galactose metabolism. Twenty-eight potential biomarkers were identified for hyperuricemia by subsequent metabolomic analysis of mouse serum, whose levels were markedly reversed by PSLP intervention. The regulation of HUA by PSLP involved alterations in purine metabolism, glycerolipid metabolism, the pentose phosphate pathway, and galactose metabolism. The mechanism of PSLP ameliorated hyperuricemia might be attributed to reduction of the level of the uric acid precursor ribose-5-phosphate in the pentose phosphate pathway, the inhibition of the activities of uric acid synthase XOD and ADA in purine metabolism, and reduction of the synthesis of the end product uric acid. This study provides a theoretical basis for the development of functional foods based on PSLP, which can potentially reduce uric acid levels.