Catalpol attenuates hepatic glucose metabolism disorder and oxidative stress in triptolide-induced liver injury by regulating the SIRT1/HIF-1α pathway

Int J Biol Sci. 2024 Aug 1;20(10):4077-4097. doi: 10.7150/ijbs.97362. eCollection 2024.

Abstract

Triptolide (TP), known for its effectiveness in treating various rheumatoid diseases, is also associated with significant hepatotoxicity risks. This study explored Catalpol (CAT), an iridoid glycoside with antioxidative and anti-inflammatory effects, as a potential defense against TP-induced liver damage. In vivo and in vitro models of liver injury were established using TP in combination with different concentrations of CAT. Metabolomics analyses were conducted to assess energy metabolism in mouse livers. Additionally, a Seahorse XF Analyzer was employed to measure glycolysis rate, mitochondrial respiratory functionality, and real-time ATP generation rate in AML12 cells. The study also examined the expression of proteins related to glycogenolysis and gluconeogenesis. Using both in vitro SIRT1 knockout/overexpression and in vivo liver-specific SIRT1 knockout models, we confirmed SIRT1 as a mechanism of action for CAT. Our findings revealed that CAT could alleviate TP-induced liver injury by activating SIRT1, which inhibited lysine acetylation of hypoxia-inducible factor-1α (HIF-1α), thereby restoring the balance between glycolysis and oxidative phosphorylation. This action improved mitochondrial dysfunction and reduced glucose metabolism disorder and oxidative stress caused by TP. Taken together, these insights unveil a hitherto undocumented mechanism by which CAT ameliorates TP-induced liver injury, positioning it as a potential therapeutic agent for managing TP-induced hepatotoxicity.

Keywords: Catalpol; Drug-induced liver injury; Energy metabolism; Hypoglycemia; Oxidative stress.

MeSH terms

  • Animals
  • Chemical and Drug Induced Liver Injury / drug therapy
  • Chemical and Drug Induced Liver Injury / metabolism
  • Diterpenes* / pharmacology
  • Diterpenes* / therapeutic use
  • Epoxy Compounds* / pharmacology
  • Epoxy Compounds* / therapeutic use
  • Glucose* / metabolism
  • Hypoxia-Inducible Factor 1, alpha Subunit* / metabolism
  • Iridoid Glucosides* / pharmacology
  • Iridoid Glucosides* / therapeutic use
  • Liver* / drug effects
  • Liver* / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Oxidative Stress* / drug effects
  • Phenanthrenes* / pharmacology
  • Sirtuin 1* / metabolism

Substances

  • Sirtuin 1
  • Diterpenes
  • catalpol
  • Epoxy Compounds
  • Phenanthrenes
  • triptolide
  • Iridoid Glucosides
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Glucose
  • Sirt1 protein, mouse