Visible and near-infrared light-induced photoclick reactions

Nat Rev Chem. 2024 Sep;8(9):665-685. doi: 10.1038/s41570-024-00633-y. Epub 2024 Aug 7.

Abstract

Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet-triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Click Chemistry*
  • Humans
  • Infrared Rays* / adverse effects
  • Light / adverse effects
  • Photochemical Processes
  • Ultraviolet Rays / adverse effects