The Streptomyces antibiotic regulatory proteins (SARPs) are ubiquitously distributed transcription activators in Streptomyces and control antibiotics biosynthesis and morphological differentiation. However, the molecular mechanism behind SARP-dependent transcription initiation remains elusive. We here solve the cryo-EM structure of an AfsR-loading RNA polymerase (RNAP)-promoter intermediate complex (AfsR-RPi) including the Streptomyces coelicolor RNAP, a large SARP member AfsR, and its target promoter DNA that retains the upstream portion straight. The structure reveals that one dimeric N-terminal AfsR-SARP domain (AfsR-SARP) specifically engages with the same face of the AfsR-binding sites by the conserved DNA-binding domains (DBDs), replacing σHrdBR4 to bind the suboptimal -35 element, and shortens the spacer between the -10 and -35 elements. Notably, the AfsR-SARPs also recruit RNAP through extensively interacting with its conserved domains (β flap, σHrdBR4, and αCTD). Thus, these macromolecular snapshots support a general model and provide valuable clues for SARP-dependent transcription activation in Streptomyces.
Keywords: Microbiology; Molecular biology; Molecular structure.
© 2024 The Author(s).