Hypothesis: Thin liquid films play a crucial role in various systems and applications. Understanding the mechanisms that regulate their morphology is a scientific challenge with obvious implications for application optimization. Thin liquid films trapped between bubbles and air-liquid interface can show various configurations influenced by their deformation history and system characteristics.
Experiments: The morphology of thin liquid films formed in the presence of surface-active molecules is here studied with interferometric techniques. Three different systems with varying interfacial properties are investigated to understand their influence on film morphology. Specific deformation histories are applied to the films to generate complex film structures.
Findings: We achieve the creation of a rather stable wimple by implementing controlled bubble motions against the air-liquid interface. We provide a criterion for wimple formation based on lubrication theory. The long-term stability of the wimple is also investigated, and more complex multi-wimple structures are experimentally produced building upon the achieved wimple stability.
Keywords: Bubbles; Dimple; Interfaces; Multi-wimple; Thin film; Wimple.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.