Triplet carbenes with transition-metal substituents

Nat Chem. 2024 Nov;16(11):1788-1793. doi: 10.1038/s41557-024-01597-8. Epub 2024 Aug 5.

Abstract

The extraordinary advances in carbene (R1-C-R2) chemistry have been fuelled by strategies to stabilize the electronic singlet state via π interactions. In contrast, the lack of similarly efficient approaches to obtain authentic triplet carbenes with appreciable lifetimes beyond cryogenic temperatures hampers their exploitation in synthesis and catalysis. Transition-metal substitution represents a potential strategy, but metallocarbenes (M-C-R) usually represent high-lying excited electronic configurations of the well-established carbyne complexes (M≡C-R). Here we report the synthesis and characterization of triplet metallocarbenes (M-C-SiMe3, M = PdII, PtII) that are persistent beyond cryogenic conditions, and their selective reactivity towards carbene C-H insertion and carbonylation. Bond analysis reveals significant stabilization by spin-polarized push-pull interactions along both π-bonding planes, which fundamentally differs from bonding in push-pull singlet carbenes. This bonding model, thus, expands key strategies for stabilizing the open-shell carbene electromers and closes a conceptual gap towards carbyne complexes.