In response to global challenges in resource supply, many industries are adopting the principles of the Circular Economy (CE) to improve their resource acquisition strategies. This paper introduces an innovative approach to address the environmental impact of waste Glass Fiber Reinforced-Polymer (GFRP) pipes and panels by repurposing them to manufacture structural components for new bicycle and pedestrian bridges. The study covers the entire process, including conceptualization, analysis, design, and testing of a deck system, with a focus on the manufacturing process for a 7-m-long prototype bridge. The study shows promising results in the concept of a sandwich structure utilizing discarded GFRP pipes and panels, which has the flexibility to account for variabilities in dimensions of incoming products while still meeting mechanical requirements. The LCA analysis shows that the transportation of materials is the governing contributing factor. It was concluded that further development of this concept should be accompanied by a business model that considers the importance of the contributions from the whole value chain.
Keywords: Bridge; Circular economy; Composite; FRP); Glass fiber reinforced polymer (GFRP; Life cycle assessment (LCA); Recycling; Repurpose; Reuse; Sustainability; Waste.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.