Short-term microplastic effects on marine meiofauna abundance, diversity and community composition

PeerJ. 2024 Jul 31:12:e17641. doi: 10.7717/peerj.17641. eCollection 2024.

Abstract

Background: Due to the copious disposal of plastics, marine ecosystems receive a large part of this waste. Microplastics (MPs) are solid particles smaller than 5 millimeters in size. Among the plastic polymers, polystyrene (PS) is one of the most commonly used and discarded. Due to its density being greater than that of water, it accumulates in marine sediments, potentially affecting benthic communities. This study investigated the ingestion of MP and their effect on the meiofauna community of a sandy beach. Meiofauna are an important trophic link between the basal and higher trophic levels of sedimentary food webs and may therefore be substantially involved in trophic transfer of MP and their associated compounds.

Methods: We incubated microcosms without addition of MP (controls) and treatments contaminated with PS MP (1-µm) in marine sediments at three nominal concentrations (103, 105, 107particles/mL), for nine days, and sampled for meiofauna with collections every three days. At each sampling time, meiofauna were collected, quantified and identified to higher-taxon level, and ingestion of MP was quantified under an epifluorescence microscope.

Results: Except for Tardigrada, all meiofauna taxa (Nematoda, turbellarians, Copepoda, Nauplii, Acari and Gastrotricha) ingested MP. Absorption was strongly dose dependent, being highest at 107 particles/mL, very low at 105 particles/mL and non-demonstrable at 103 particles/mL. Nematodes accumulated MP mainly in the intestine; MP abundance in the intestine increased with increasing incubation time. The total meiofauna density and species richness were significantly lower at the lowest MP concentration, while at the highest concentration these parameters were very similar to the control. In contrast, Shannon-Wiener diversity and evenness were greater in treatments with low MP concentration. However, these results should be interpreted with caution because of the low meiofauna abundances at the lower two MP concentrations.

Conclusion: At the highest MP concentration, abundance, taxonomic diversity and community structure of a beach meiofauna community were not significantly affected, suggesting that MP effects on meiofauna are at most subtle. However, lower MP concentrations did cause substantial declines in abundance and diversity, in line with previous studies at the population and community level. While we can only speculate on the underlying mechanism(s) of this counterintuitive response, results suggest that further research is needed to better understand MP effects on marine benthic communities.

Keywords: Community structure; Dose-dependent effect; Fluorescence; Ingestion; Marine impact; Meiobenthos; Microcosm; Plastic; Pollution.

MeSH terms

  • Animals
  • Aquatic Organisms
  • Biodiversity*
  • Environmental Monitoring / methods
  • Food Chain
  • Geologic Sediments / chemistry
  • Invertebrates / drug effects
  • Microplastics*
  • Polystyrenes
  • Water Pollutants, Chemical* / analysis

Substances

  • Microplastics
  • Water Pollutants, Chemical
  • Polystyrenes

Grants and funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Flávia J L de França was supported by grant number 88887.635950/2021-00 from the Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES. Renan B da Silva was supported by grant number IBPG-0102-2.04/23 from the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco –FACEPE. Giovanna L. Pessoa was supported by BIC grant number 230121628 from PROPESQI. Débora AA França was supported by grant number 88887.702887/2022-00 from CAPES. Giovanni AP Dos Santos was supported by PROPESQI Notiz number 09/2019 from the Federal University of Pernambuco. Additional funding was obtained from the project HOTMIC (BEL.BRA.2019.0008.01) in the framework of the JPI Oceans Joint Action on Ecological Aspects of Microplastics. There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.