Sphingolipids are ubiquitous in membranes of eukaryotes and are associated with important cellular functions. Although sphingolipids occur scarcely in bacteria, for some of them they are essential and, in other bacteria, they contribute to fitness and stability of the outer membrane, such as in the well-studied α-proteobacterium Caulobacter crescentus. We previously defined five structural genes for ceramide synthesis in C. crescentus, among them the gene for serine palmitoyltransferase, the enzyme that catalyzes the committed step of sphingolipid biosynthesis. Other mutants affected in genes of this same genomic region show cofitness with a mutant deficient in serine palmitoyltransferase. Here we show that at least two phosphosphingolipids are produced in C. crescentus and that at least another six gene products are needed for the decoration of ceramide upon phosphosphingolipid formation. All eleven genes participating in phosphosphingolipid formation are also required in C. crescentus for membrane stability and for displaying sensitivity towards the antibiotic polymyxin B. The genes for the formation of complex phosphosphingolipids are also required for C. crescentus virulence on Galleria mellonella insect larvae.
Copyright: © 2024 Olea-Ozuna et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.