Electrosynthesis-Induced Pt Skin Effect in Mesoporous Ni-Rich Ni-Pt Thin Films for Hydrogen Evolution Reaction

ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42305-42311. doi: 10.1021/acsami.4c09288. Epub 2024 Aug 2.

Abstract

A Pt skin effect, i.e., an enrichment of Pt within the first 1-2 nm from the surface, is observed in as-prepared electrodeposited Ni-rich Ni-Pt thin films. This effect, revealed by Rutherford backscattering (RBS), is present for both dense thin films and mesoporous thin films synthesized by micelle-assisted electrodeposition from a chloride-based electrolyte. Due to the Pt skin effect, the Ni-rich thin films show excellent stability at the hydrogen evolution reaction (HER) in acidic media, during which a gradient in the Pt/Ni ratio is established along the thickness of the thin films, while the activity at the HER remains unaffected by this structural change. Further characterization by elastic recoil detection with He ions analysis shows that hydrogen profiles are similar to those of Pt: a surface hydrogen peak coincides with the Pt skin, and a gradient in hydrogen concentration is established during HER in acidic media, together with a considerable uptake in hydrogen. A comparative study shows that in alkaline media, hydrogen evolution has little to no effect on the structural properties of the thin films, even for much longer times of exposure. The mesoporous thin films, in addition to their higher efficiency at HER compared to dense thin films, also show lower internal stress, as determined by Rietveld refinement of grazing incidence X-ray diffraction patterns. The latter also reveal a fully single-phase and nanocrystalline structure for all thin films with varying Ni contents.

Keywords: Pt skin effect; electrodeposition; hydrogen; ion beam analysis; mesoporous materials; thin films; water splitting.