Intrinsic disorder and salt-dependent conformational changes of the N-terminal region of TFIP11 splicing factor

Int J Biol Macromol. 2024 Oct;277(Pt 3):134291. doi: 10.1016/j.ijbiomac.2024.134291. Epub 2024 Jul 30.

Abstract

Tuftelin Interacting Protein 11 (TFIP11) was identified as a critical human spliceosome assembly regulator, interacting with multiple proteins and localising in membrane-less organelles. However, a lack of structural information on TFIP11 limits the rationalisation of its biological role. TFIP11 is predicted as an intrinsically disordered protein (IDP), and more specifically concerning its N-terminal (N-TER) region. IDPs lack a defined tertiary structure, existing as a dynamic conformational ensemble, favouring protein-protein and protein-RNA interactions. IDPs are involved in liquid-liquid phase separation (LLPS), driving the formation of subnuclear compartments. Combining disorder prediction, molecular dynamics, and spectroscopy methods, this contribution shows the first evidence TFIP11 N-TER is a polyampholytic IDP, exhibiting a structural duality with the coexistence of ordered and disordered assemblies, depending on the ionic strength. Increasing the salt concentration enhances the protein conformational flexibility, presenting a more globule-like shape, and a fuzzier unstructured arrangement that could favour LLPS and protein-RNA interaction. The most charged and hydrophilic regions are the most impacted, including the G-Patch domain essential to TFIP11 function. This study gives a better understanding of the salt-dependent conformational behaviour of the N-TER TFIP11, supporting the hypothesis of the formation of different types of protein assembly, in line with its multiple biological roles.

Keywords: Intrinsically disordered protein; Molecular dynamics; Polyampholyte; Protein assembly; Spectroscopy; Spliceosome protein; Tuftelin interacting protein 11.

MeSH terms

  • Humans
  • Intrinsically Disordered Proteins* / chemistry
  • Intrinsically Disordered Proteins* / genetics
  • Intrinsically Disordered Proteins* / metabolism
  • Molecular Dynamics Simulation
  • Protein Conformation
  • Protein Domains
  • RNA Splicing Factors / chemistry
  • RNA Splicing Factors / genetics
  • RNA Splicing Factors / metabolism
  • RNA-Binding Proteins / chemistry
  • RNA-Binding Proteins / metabolism
  • Salts / chemistry

Substances

  • Intrinsically Disordered Proteins
  • RNA-Binding Proteins
  • RNA Splicing Factors
  • Salts