Aim: Postprandial hypertriglyceridemia (PHTG) is an independent risk factor for coronary heart diseases. PHTG exhibits accumulation of apoB-48 containing chylomicron remnants (CM-Rs) and apoB-100 containing VLDL remnants (VLDL-Rs), which are both known to be atherogenic. However, unlike VLDL-Rs, structural and functional characterization of CM-Rs remains to be elucidated due to challenges in separating CM-Rs from VLDL-Rs. Recently, we successfully isolated CM-Rs and VLDL-Rs utilizing anti-apoB-48 or apoB-100 specific antibodies. This study aimed to characterize the proteome of CM-Rs along with that of VLDL-Rs.
Methods: Eight healthy subjects were enrolled. Venous blood was drawn 3 hours after high-fat-containing meals. We isolated CM-Rs and VLDL-Rs from sera through combination of ultracentrifugation and immunoprecipitation using apoB-48 or apoB-100 specific antibodies, followed by shotgun proteomic analysis.
Results: We identified 42 CM-Rs or VLDL-Rs-associated proteins, including 11 potential newly identified proteins such as platelet basic protein (PPBP) and platelet factor 4, which are chemokines secreted from platelets. ApoA-I, apoA-IV, and clusterin, which are also known as HDL-associated proteins, were significantly more abundant in CM-Rs. Interestingly, apoC-I, which reduces the activity of lipoprotein lipase and eventually inhibits catabolism of remnant proteins, was also more abundant in CM-Rs. Moreover, we identified proteins involved in complement regulation such as complement C3 and vitronectin, and those involved in acute-phase response such as PPBP, serum amyloid A protein 2, and protein S100-A8, in both CM-Rs and VLDL-Rs.
Conclusions: We have firstly characterized the proteome of CM-Rs. These findings may provide an explanation for the atherogenic properties of CM-Rs.
Keywords: Atherosclerosis; Chylomicron remnants; Inflammation; Postprandial hypertriglyceridemia; Proteomics; Remnant lipoproteins; VLDL remnants.