Though the heparin-protamine complex (HP complex) is a crucial system utilized in clinical settings, the metabolic pathways of this complex remain inadequately understood. Herein, the enzymatic degradation of the heparin-protamine complex by trypsin and its broader implications were investigated. By utilizing fluorescent gold nanoclusters liganded with the HP complex (AuNCs-HP complex), we observed significant morphological and spectral changes during enzymatic degradation. Experiments showed that AuNCs-HP complex could be degraded and cleaved into small fragments by trypsin. Moreover, the AuNCs-HP complex demonstrated its potential as a highly sensitive spectral sensing platform, enabling precise measurement of trypsin activity with an outstanding detection limit (0.34 ng mL-1). Additionally, we explored its utility for specific tumor cell detection, focusing on lung adenocarcinoma cells, and successfully identified their presence through distinctive fluorescence changes. These remarkable findings not only contribute valuable insights into targeted degradation systems but also offer promising opportunities for cancer biomarker detection. The AuNCs-HP complex serves as an innovative tool for real-time trypsin activity monitoring, paving the way for advanced biomedical applications.
Keywords: Cancer cell detection; Gold nanoclusters; Heparin-protamine.
Copyright © 2024 Elsevier B.V. All rights reserved.