Regular cigarette smoking and cannabis consumption are strongly positively related to each other, yet few studies explore their underlying variation and covariation. We evaluated the genetic and environmental decomposition of variance and covariance of these two traits in twin data from three countries with different social norms and legislation. Data from the Netherlands Twin Register, FinnTwin12/16, and the Minnesota Center for Twin Family Research (total N = 21,617) were analyzed in bivariate threshold models of lifetime regular smoking initiation (RSI) and lifetime cannabis initiation (CI). We ran unstratified models and models stratified by sex and country. Prevalence of RSI was lowest in the Netherlands and prevalence of CI was highest in Minnesota. In the unstratified model, genetic (A) and common environmental factors (C) contributed substantially to the liabilities of RSI (A = 0.47, C = 0.34) and CI (A = 0.28, C = 0.51). The two liabilities were significantly phenotypically (rP = 0.56), genetically (rA = 0.74), and environmentally correlated in the unstratified model (rC = 0.47and rE = 0.48, representing correlations between common and unique environmental factors). The magnitude of phenotypic correlation between liabilities varied by country but not sex (Minnesota rP ~ 0.70, Netherlands rP ~ 0.59, Finland rP ~ 0.45). Comparisons of decomposed correlations could not be reliably tested in the stratified models. The prevalence and association of RSI and CI vary by sex and country. These two behaviors are correlated because there is genetic and environmental overlap between their underlying latent liabilities. There is heterogeneity in the genetic architecture of these traits across country.
Keywords: Genetic correlation; Liability threshold model; Substance use; Twin model.
© 2024. The Author(s).