Epstein-Barr Virus (EBV), structurally similar to other herpes viruses, possess significant global health challenges as it causes infectious mononucleosis and is also associated with various cancers. Due to this widespread impact, an effective messenger RNA (mRNA) vaccine is paramount to help curb its spread, further underscoring the need for its development. This study, following an immunoinformatic approach, aimed to design a comprehensive mRNA vaccine against the EBV by selecting antigenic proteins, predicting Linear B-cell epitopes, cytotoxic T-cell lymphocyte (CTL) and helper T-cell lymphocyte (HTL) epitopes, and assessing vaccine characteristics. Seventy-nine EBV isolates from diverse geographical regions were examined. Additionally, the vaccine construct's physicochemical properties, transmembrane domains, solubility, and secondary structures were analysed. Molecular docking was conducted with Toll-Like Receptor 5 (TLR-5). Population coverage was assessed for selected major histocompatibility complex (MHC) alleles, and immune response was simulated. The result of this study highlighted a vaccine construct with high antigenicity, non-toxicity, and non-allergenicity and possessed favourable physicochemical properties. The vaccine's 3D structure is native-like and strongly binds with TLR-5, indicating a solid affinity with TLR-5. The selected MHC alleles provided broad universal population coverage of 89.1%, and the immune simulations suggested a robust and wide-ranging immunogenic response, activating critical immune cells, antibodies, and cytokines. These findings provide a solid foundation for further development and testing of the EBV candidate vaccine, offering potential solutions for combating EBV infections.
Keywords: Cytokines; Epstein–Barr Virus; Immune simulations; Immunoinformatic.
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.