Cyclin-dependent kinases (CDKs) are overexpressed in tumor cells, and their aberrant activation can promote the progression of non-small-cell lung cancer (NSCLC). We utilized structure-based virtual screening and experimental validation to screen for potential CDKs antagonists among TargetMol natural products. Molecular docking and molecular dynamics simulation results indicate that Dolastatin 10 exhibits strong interactions with multiple subtypes of CDKs (CDK1, CDK2, CDK3, CDK4, and CDK6), forming stable CDKs-Dolastatin 10 complex compounds. Furthermore, in vitro experiments demonstrate that Dolastatin 10 significantly inhibits the viability, migration, and invasion of H1299 cells in a concentration-dependent manner, arresting the cell cycle at the G2/M phase by inducing cell senescence. These findings suggest that Dolastatin 10 may serve as a potential CDKs antagonist deserving further investigation.
Keywords: Cyclin-dependent kinase inhibitor; Dolastatin 10; Molecular docking; Molecular dynamics simulation; Non-small-cell lung cancer.
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.