Purpose: The purpose of this study was to determine the effect of acute nicotinamide riboside (NR) supplementation on cerebral nicotinamide adenine dinucleotide (NAD+) levels in the human brain in vivo by means of downfield proton MRS (DF 1H MRS).
Methods: DF 1H MRS was performed on 10 healthy volunteers in a 7.0 T MRI scanner with spectrally selective excitation and spatially selective localization to determine cerebral NAD+ levels on two back-to-back days: once after an overnight fast (baseline) and once 4 h after oral ingestion of nicotinamide riboside (900 mg). Additionally, two more baseline scans were performed following the same paradigm to assess test-retest reliability of the NAD+ levels in the absence of NR.
Results: NR supplementation increased mean NAD+ concentration compared to the baseline (0.458 ± 0.053 vs. 0.392 ± 0.058 mM; p < 0.001). The additional two baseline scans demonstrated no differences in mean NAD+ concentrations (0.425 ± 0.118 vs. 0.405 ± 0.082 mM; p = 0.45), and no difference from the first baseline scan (F(2, 16) = 0.907; p = 0.424).
Conclusion: These preliminary results confirm that acute NR supplementation increases cerebral NAD+ levels in healthy human volunteers and shows the promise of DF 1H MRS utility for robust detection of NAD+ in humans in vivo.
Keywords: DF 1H MRS; NAD+; NR; downfield proton MRS; nicotinamide adenine dinucleotide; nicotinamide riboside.
© 2024 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.