NADPH oxidase in B cells and macrophages protects against murine lupus by regulation of TLR7

JCI Insight. 2024 Jul 23;9(16):e178563. doi: 10.1172/jci.insight.178563.

Abstract

Loss of NADPH oxidase (NOX2) exacerbates systemic lupus erythematosus (SLE) in mice and humans, but the mechanisms underlying this effect remain unclear. To identify the cell lineages in which NOX2 deficiency drives SLE, we employed conditional KO and chimeric approaches to delete Cybb in several hematopoietic cell lineages of MRL.Faslpr SLE-prone mice. Deletion of Cybb in macrophages/monocytes exacerbated SLE nephritis, though not to the degree observed in the Cybb global KOs. Unexpectedly, the absence of Cybb in B cells resulted in profound glomerulonephritis and interstitial nephritis, rivaling that seen with global deletion. Furthermore, we identified that NOX2 is a key regulator of TLR7, a driver of SLE pathology, both globally and specifically in B cells. This is mediated in part through suppression of TLR7-mediated NF-κB signaling in B cells. Thus, NOX2's immunomodulatory effect in SLE is orchestrated not only by its function in the myeloid compartment, but through a pivotal role in B cells by selectively inhibiting TLR7 signaling.

Keywords: Autoimmunity; Lupus.

MeSH terms

  • Animals
  • B-Lymphocytes* / immunology
  • B-Lymphocytes* / metabolism
  • Disease Models, Animal
  • Female
  • Lupus Erythematosus, Systemic* / immunology
  • Lupus Erythematosus, Systemic* / metabolism
  • Lupus Nephritis / genetics
  • Lupus Nephritis / immunology
  • Lupus Nephritis / metabolism
  • Lupus Nephritis / pathology
  • Macrophages* / immunology
  • Macrophages* / metabolism
  • Membrane Glycoproteins
  • Mice
  • Mice, Knockout*
  • NADPH Oxidase 2* / genetics
  • NADPH Oxidase 2* / metabolism
  • NF-kappa B / metabolism
  • Signal Transduction
  • Toll-Like Receptor 7* / genetics
  • Toll-Like Receptor 7* / metabolism

Substances

  • Toll-Like Receptor 7
  • NADPH Oxidase 2
  • Tlr7 protein, mouse
  • Cybb protein, mouse
  • NF-kappa B
  • Membrane Glycoproteins