Practical application of lithium-sulfur (Li-S) batteries is severely impeded by the random shuttling of soluble lithium polysulfides (LiPSs), sluggish sulfur redox kinetics, and uncontrollable growth of lithium dendrites, particularly under high sulfur loading and lean electrolyte conditions. Here, nitrogen-doped bronze-phase TiO2(B) nanosheets with oxygen vacancies (OVs) grown in situ on MXenes layers (N-TiO2- x(B)-MXenes) as multifunctional interlayers are designed. The N-TiO2- x(B)-MXenes show reduced bandgap of 1.10 eV and high LiPSs adsorption-conversion-nucleation-decomposition efficiency, leading to remarkably enhanced sulfur redox kinetics. Moreover, they also have lithiophilic nature that can effectively suppress dendrites growth. The cell based on the N-TiO2- x(B)-MXenes interlayer under sulfur loading of 2.5 mg cm-2 delivers superior cycling performance with a high specific capacity of 690.7 mAh g-1 over 600 cycles at 1.0 C. It still has a notable areal capacity of 6.15 mAh cm-2 after 50 cycles even under a high sulfur loading of 7.2 mg cm-2 and a low electrolyte-to-sulfur (E/S) ratio of 6.4 µL mg-1. The Li-symmetrical battery with the N-TiO2- x(B)-MXenes interlayer showcases a low over-potential fluctuation with 21.0 mV throughout continuous lithium plating/stripping for 1000 h. This work offers valuable insights into the manipulation of defects and heterostructures to achieve high-energy Li-S batteries.
Keywords: Li2S deposition/decomposition; lean electrolyte; lithium dendrite; lithium–sulfur battery; redox kinetics.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.