Trafficking circuit of CD8+ T cells between the intestine and bone marrow governs antitumour immunity

Nat Cell Biol. 2024 Aug;26(8):1346-1358. doi: 10.1038/s41556-024-01462-3. Epub 2024 Jul 22.

Abstract

Immunotherapy elicits a systemic antitumour immune response in peripheral circulating T cells. However, the T cell trafficking circuit between organs and their contributions to antitumour immunity remain largely unknown. Here we show in multiple mouse leukaemia models that high infiltration of leukaemic cells in bone marrow (BM) stimulates the transition of CD8+CD44+CD62L+ central memory T cells into CD8+CD44-CD62L- T cells, designated as inter-organ migratory T cells (TIM cells). TIM cells move from the BM to the intestine by upregulating integrin β7 and downregulating C-X-C motif chemokine receptor 3 during leukaemogenesis. Upon immunogenic chemotherapy, these BM-derived TIM cells return from the intestine to the BM through integrin α4-vascular cell adhesion molecule 1 interaction. Blocking C-X-C motif chemokine receptor 3 function boosts the immune response against leukaemia by enhancing T cell trafficking. This phenomenon can also be observed in patients with leukaemia. In summary, we identify an unrecognized intestine-BM trafficking circuit of T cells that contributes to the antitumour effects of immunogenic chemotherapy.

MeSH terms

  • Animals
  • Bone Marrow / immunology
  • Bone Marrow / metabolism
  • Bone Marrow / pathology
  • CD8-Positive T-Lymphocytes* / immunology
  • CD8-Positive T-Lymphocytes* / metabolism
  • Cell Line, Tumor
  • Cell Movement*
  • Humans
  • Integrin beta Chains / metabolism
  • Intestinal Mucosa / immunology
  • Intestinal Mucosa / metabolism
  • Intestinal Mucosa / pathology
  • Intestines / immunology
  • Intestines / pathology
  • Mice
  • Mice, Inbred C57BL*
  • Mice, Knockout
  • Receptors, CXCR3 / metabolism

Substances

  • Receptors, CXCR3
  • Integrin beta Chains
  • integrin beta7
  • Cxcr3 protein, mouse