Introduction: Smartphone applications (apps) are instruments that assist with objective measurements during the clinical assessment of patients with movement disorders. We aim to test the hypothesis that Parkinson's disease (PD) patients will exhibit an increase in tapping variability and a decrease in tapping speed over a one-year period, compared to healthy controls (HC).
Methods: Data was prospectively collected from participants enrolled in our Cincinnati Cohort Biomarker Program, in 2021-2023. Participants diagnosed with PD and age-matched HC were examined over a one-year-interval with a tapping test performed with customized smartphone app. Tapping speed (taps/s), inter-tap intervals and variability (movement regularity), and sequence effect were measured.
Results: We included 295 PD patients and 62 HC. At baseline, PD subjects showed higher inter-tap variability than HC (coefficient-of-variation-CV, 37 ms [22-64] vs 26 ms [8-51]) (p = 0.007). Conversely, there was no difference in inter-tap intervals (411 ms [199-593] in PD versus 478 ms [243-618] in HC) and tapping speed (3.42[2.70-4.76] taps/s in PD versus 3.21 taps/s [2.57-4.54] in HC) (p > 0.05). Only PD subjects (n = 135), at the one-year follow-up, showed a decreased tapping speed vs baseline (3.44 taps/s [2.86-4.81] versus 3.39 taps/s [2.58,4.30]) (p = 0.036), without significant changes in inter-tap variability (CV, 32 ms [18,55] baseline versus 34 ms [22,59] follow-up) (p = 0.142). No changes were found in HC at the one-year follow up (all p values>0.05).
Conclusions: Inter-tap variability (dysrhythmia) but no inter-tap intervals or tapping speed are reliably distinctive feature of an app-based bradykinesia assessment in PD.
Keywords: Bradykinesia; Parkinson's disease; Smartphone; Technology; Wearable sensors.
Copyright © 2024. Published by Elsevier B.V.