Elucidating bacterial coaggregation through a physicochemical and imaging surface characterization

Sci Total Environ. 2024 Oct 20:948:174872. doi: 10.1016/j.scitotenv.2024.174872. Epub 2024 Jul 20.

Abstract

Bacterial coaggregation is a highly specific type of cell-cell interaction, well-documented among oral bacteria, and involves specific characteristics of the cell surface of the coaggregating strains. However, the understanding of the mechanisms promoting coaggregation in aquatic systems remains limited. This gap is critical to address, given the broad implications of coaggregation for multispecies biofilm formation, water quality, the performance of engineered systems, and diverse biotechnological applications. Therefore, this study aims to comprehensively characterize the cell surface of the coaggregating strain Delftia acidovorans 005P, isolated from drinking water, alongside a non-coaggregating strain, D. acidovorans 009P. By analyzing two strains of the same species, we aim to identify the factors contributing to the coaggregation ability of strain 005P. To achieve this, we employed a combination of physicochemical characterization, Fourier-transform infrared spectroscopy (FTIR), and advancing imaging techniques [transmission electron microscopy and cryo-electron tomography (cryo-ET)]. The coaggregating strain (005P) exhibited higher surface hydrophobicity, negative surface charge, and cell surface and co-adhesion energies than the non-coaggregating strain (009P). The chemical characterization of bacterial surfaces through FTIR revealed subtle differences, particularly in spectral regions linked to carbohydrates and phosphodiesters/amide III of proteins (860-930 cm-1 and 1212-1240 cm-1, respectively). Cryo-ET highlighted significant differences in pili structures between the strains, such as variations in length, frequency, and arrangement. The pili in the 005P strain, identified as pili-like adhesins, serve as key mediators of coaggregation. By integrating physicochemical analyses and high-resolution imaging techniques, this study conclusively links the coaggregation ability of D. acidovorans 005P to its unique pili characteristics, emphasizing their crucial role in microbial coaggregation in aquatic environments.

Keywords: Cell-cell interaction; Co-adhesion energy; Cryo-electron tomography; Delftia acidovorans; FTIR; XDLVO theory.

MeSH terms

  • Bacterial Adhesion*
  • Biofilms
  • Spectroscopy, Fourier Transform Infrared
  • Surface Properties