VP1, a major immunogenic protein of foot-and-mouth disease virus (FMDV), facilitates viral attachment and entry into host cells. VP1 possesses critical epitope sequences responsible for inducing neutralizing antibodies but its expression using Saccharomyces cerevisiae has been hampered despite evidence that the presence of VP1 does not negatively impact the yeast's biology. In this study, we fused proteins to enhance VP1 expression using S. cerevisiae. Among short P1 chimeras containing VP1 including VP3-VP1 and VP2-VP1, VP3-VP1 fusion proteins showed higher expression levels than VP2-VP1. We subsequently designed new fusion proteins, of which 20 amino acids of N-terminal VP3 fused with VP1-Co1 (referred to 20aaVP3-VP1-Co1) showed the highest expression level. Lowering the culture temperature from 30 ⁰C to 20 ⁰C further enhanced fusion protein production. The highest expression level of 20aaVP3-VP1-Co1 was estimated to be 7.7 mg/L, which is comparable to other heterologous proteins produced using our S. cerevisiae expression system. Oral administration of the cell expressing 20aaVP3-VP1-Co1 induced VP1-specific IgG and IgA responses in mice. The S. cerevisiae-expressed 20aaVP3-VP1-Co1 fusion protein induced a significant immune response to the FMDV structural epitope protein, which opens the possibility of an oral FMDV vaccine.
Keywords: Antiviral; Apthovirus; Foot-and-mouth disease virus; Oral immunization; Saccharomyces cerevisiae.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.