Acteoside (ACT) was the main bioactive components in phenylethanoid glycosides of Cistanche tubulosa. Currently, the development of an efficient method for selectively separating ACT was crucial. Consequently, yolk-shell magnetic mesoporous carbon (YSMMC) was synthesized as a nanofiller to prepare molecularly imprinted membranes (ACT-MIMs) with instant noodles-like structure for selectively separating ACT. The numerous YSMMC were moved to the upper surface of ACT-MIMs by magnetic guidance and constructed the instant noodles-like structure in ACT-MIMs. The instant noodle-like structure increased the surface roughness of ACT-MIMs, which was conducive to improving the effective imprinted interface, increasing the selectivity of ACT-MIMs. In addition, the instant noodle-like structure had dendritic interleaved pathways in ACT-MIMs. The dendritic interleaved pathways can intercept ACT through ACT-MIMs, enhancing the permselectivity of ACT-MIMs. The prepared YSMMC possessed the dendritic shell and interlayer cavity structure can provide a great accommodation space, improving the rebinding capacities of ACT-MIMs. The high permselectivity (14.49), remarkable selectivity (7.52), and excellent rebinding capacity (120.48 mg/g) were achieved for the prepared ACT-MIMs. Thus, the design of ACT-MIMs with the instant noodles-like structure were valuable for selectively separating of bioactive components.
Keywords: Bioactive component; Dendritic interleaved pathway; Instant noodles-like structure; Molecularly imprinted membrane; Separation.
Copyright © 2024 Elsevier B.V. All rights reserved.