3D Brain Vascular Niche Model Captures Invasive Behavior and Gene Signatures of Glioblastoma

bioRxiv [Preprint]. 2024 Jul 13:2024.07.09.601756. doi: 10.1101/2024.07.09.601756.

Abstract

Glioblastoma (GBM) is a lethal brain cancer with no effective treatment; understanding how GBM cells respond to tumor microenvironment remains challenging as conventional cell cultures lack proper cytoarchitecture while in vivo animal models present complexity all at once. Developing a culture system to bridge the gap is thus crucial. Here, we employed a multicellular approach using human glia and vascular cells to optimize a 3-dimensional (3D) brain vascular niche model that enabled not only long-term culture of patient derived GBM cells but also recapitulation of key features of GBM heterogeneity, in particular invasion behavior and vascular association. Comparative transcriptomics of identical patient derived GBM cells in 3D and in vivo xenotransplants models revealed that glia-vascular contact induced genes concerning neural/glia development, synaptic regulation, as well as immune suppression. This gene signature displayed region specific enrichment in the leading edge and microvascular proliferation zones in human GBM and predicted poor prognosis. Gene variance analysis also uncovered histone demethylation and xylosyltransferase activity as main themes for gene adaption of GBM cells in vivo . Furthermore, our 3D model also demonstrated the capacity to provide a quiescence and a protective niche against chemotherapy. In summary, an advanced 3D brain vascular model can bridge the gap between 2D cultures and in vivo models in capturing key features of GBM heterogeneity and unveil previously unrecognized influence of glia-vascular contact for transcriptional adaption in GBM cells featuring neural/synaptic interaction and immunosuppression.

Publication types

  • Preprint