Milk is one of the most widely consumed foods globally. To protect consumer interests, it is essential to establish an analytical method to detect the degree of heating in milk. A novel approach using nano liquid chromatography-orbitrap fusion mass spectrometer was developed for screening and identifing thermally sensitive peptides markers in the milk heating process (below 100 °C). This method integrates untargeted proteomics and chemometric tools to analyze protein quantitation data from differently heat-treated milk. Thirteen potential markers were screened out and identified, and further confirmed using by standard substances. Then, the accurate concentrations of 13 potential markers determined by isotope-dilution ultra-performance liquid chromatography-tandem triple quadrupole mass spectrometry were further mining the highly specific and thermally sensitive peptides markers. And Four peptides-INLFDTPLETQYVR, FELLGCELNGCTEPLGLK, QFQFIQVAGR, and GEADALNLDGGYIYTAGK-were selected as marker peptides to differentiate normal pasteurized milk from overheated pasteurized milk. The concentrations of INLFDTPLETQYVR ranges from 150 ± 11 µg/L to 350 ± 23 µg/L, while the concentrations of FELLGCELNGCTEPLGLK ranges from 40 ± 5 µg/L to 92 ± 3 µg/L, can distinguish normal pasteurized milk from overheated pasteurized milk. QFQFIQVAGR indicates overheated pasteurized milk at 230 ± 21 µg/L, and GEADALNLDGGYIYTAGK signifies 750 ± 43 µg/L. This study provides new insights for distinguishing overheated pasteurized milk.
Keywords: Identification; Milk heating process; Nano liquid chromatography-orbitrap fusion mass spectrometry; Peptides; Screening.
Copyright © 2024 Elsevier B.V. All rights reserved.