Background: This research explores the causal association between circulating inflammatory markers and the development of sciatica, a common and debilitating condition. While previous studies have indicated that inflammation may be a factor in sciatica, but a thorough genetic investigation to determine a cause-and-effect relationship has not yet been carried out. Gaining insight into these interactions may uncover novel treatment targets.
Methods: We utilized data from the OpenGWAS database, incorporating a large European cohort of 484,598 individuals, including 4,549 sciatica patients. Our study focused on 91 distinct circulating inflammatory markers. Genetic variations were employed as instrumental variables (IVs) for these markers. The analysis was conducted using inverse variance weighting (IVW) as the primary method, supplemented by weighted median-based estimation. Validation of the findings was conducted by sensitivity studies, utilizing the R software for statistical computations.
Results: The analysis revealed that 52 out of the 91 inflammatory markers studied showed a significant causal association with the risk of developing sciatica. Key markers like CCL2, monocyte chemotactic protein-4, and protein S100-A12 demonstrated a positive correlation. In addition, there was no heterogeneity or horizontal pleiotropy in these results. Interestingly, a reverse Mendelian randomization analysis also indicated potential causative effects of sciatica on certain inflammatory markers, notably Fms-related tyrosine kinase 3 ligands.
Discussion: The study provides robust evidence linking specific circulating inflammatory markers with the risk of sciatica, highlighting the role of inflammation in its pathogenesis. These findings could inform future research into targeted treatments and enhance our understanding of the biological mechanisms underlying sciatica.
Keywords: GWAS; Mendelian randomization; circulating inflammatory markers; epidemiology; genetic analysis; inflammation; sciatica.
Copyright © 2024 Wu, Lin, Zhang, He and Tian.