Achieving Magnetic Refrigerants with Large Magnetic Entropy Changes and Low Magnetic Ordering Temperatures

J Am Chem Soc. 2024 Jul 24;146(29):20116-20121. doi: 10.1021/jacs.4c04258. Epub 2024 Jul 15.

Abstract

Adiabatic demagnetization refrigeration (ADR) is a promising cooling technology with high efficiency and exceptional stability in achieving ultralow temperatures, playing an indispensable role at the forefront of fundamental and applied science. However, a significant challenge for ADR is that existing magnetic refrigerants struggle to concurrently achieve low magnetic ordering temperatures (T0) and substantial magnetic entropy changes (-ΔSm) at ultralow temperatures. In this work, we propose the combination of Gd3+ and Yb3+ to effectively regulate both -ΔSm and T0 in ultralow temperatures. Notably, the -ΔSm values for Gd0.1Yb0.9F3 (1) and Gd0.3Yb0.7F3 (2) in the 0.4-1.0 K range exceed those of all previously reported magnetic refrigerants within this temperature interval, positioning them as the most efficient magnetic refrigerants for the third stage to date. Although the -ΔSm values for Gd0.5Yb0.5F3 (3) in 1-4 K are less than those of the leading magnetic refrigerant Gd(OH)F2, the -ΔSm values for Gd0.7Yb0.3F3 (4) in 1-4 K at 2 T surpass those of all magnetic refrigerants previously documented within the same temperature range, making it the superior magnetic refrigerant for the fourth stage identified thus far.