Breast cancer diagnosis from histopathology images is often time consuming and prone to human error, impacting treatment and prognosis. Deep learning diagnostic methods offer the potential for improved accuracy and efficiency in breast cancer detection and classification. However, they struggle with limited data and subtle variations within and between cancer types. Attention mechanisms provide feature refinement capabilities that have shown promise in overcoming such challenges. To this end, this paper proposes the Efficient Channel Spatial Attention Network (ECSAnet), an architecture built on EfficientNetV2 and augmented with a convolutional block attention module (CBAM) and additional fully connected layers. ECSAnet was fine-tuned using the BreakHis dataset, employing Reinhard stain normalization and image augmentation techniques to minimize overfitting and enhance generalizability. In testing, ECSAnet outperformed AlexNet, DenseNet121, EfficientNetV2-S, InceptionNetV3, ResNet50, and VGG16 in most settings, achieving accuracies of 94.2% at 40×, 92.96% at 100×, 88.41% at 200×, and 89.42% at 400× magnifications. The results highlight the effectiveness of CBAM in improving classification accuracy and the importance of stain normalization for generalizability.
Keywords: breast cancer; breast tumors; convolutional neural networks; deep learning; diagnosis; histopathological images; image classifier; transfer learning.