Patterns of Left Ventricular Remodelling in Children and Young Patients with Hypertrophic Cardiomyopathy

J Clin Med. 2024 Jul 4;13(13):3937. doi: 10.3390/jcm13133937.

Abstract

Introduction: The aim of this study was to evaluate the age at onset, clinical course, and patterns of left ventricular (LV) remodelling during follow-up in children and young patients with hypertrophic cardiomyopathy (HCM). Methods: We included consecutive patients with sarcomeric or non-syndromic HCM below 18 years old. Three pre-specified patterns of LV remodelling were assessed: maximal LV wall thickness (MLVWT) thickening; MLVWT thinning with preserved LV ejection fraction; and MLVWT thinning with progressive reduction in LV ejection fraction (hypokinetic end-stage evolution). Results: Fifty-three patients with sarcomeric/non-syndromic HCM (mean age 9.4 ± 5.5 years, 68% male) fulfilled the inclusion criteria. In total, 32 patients (60%) showed LV remodelling: 3 patients (6%) exhibited MLVWT thinning; 16 patients (30%) showed MLVWT thickening; and 13 patients (24%) progressed to hypokinetic end-stage HCM. Twenty-one patients (40%) had no LV remodelling during follow-up. In multivariate analysis, MLVWT was a predictor of the hypokinetic end-stage remodelling pattern during follow-up (OR 1.17 [95%CI 1.01-1.36] per 1 mm increase, p-value 0.043), regardless of sarcomeric variants and New York Heart Association class. Two patients with sarcomeric HCM, showing a pattern of MLVWT regression during childhood, experienced progression during adolescence. Conclusions: Different patterns of LV remodelling were observed in a cohort of children with sarcomeric/non-syndromic HCM. Interestingly, a pattern of progressive MLVWT thinning during childhood, with new progression of MLVWT during adolescence, was noted. A better understanding of the remodelling mechanisms in children with sarcomeric HCM may be relevant to defining the timing and possible efficacy of new targeted therapies in the preclinical stage of the disease.

Keywords: hypertrophic cardiomyopathy; left ventricular hypertrophy; remodelling.

Grants and funding

This research received no external funding.