Synthesis of Heterostructured TiO2 Nanopores/Nanotubes by Anodizing at High Voltages

Materials (Basel). 2024 Jul 6;17(13):3347. doi: 10.3390/ma17133347.

Abstract

This paper reports on the coating of heterostructured TiO2 nanopores/nanotubes on Ti substrates by anodizing at high voltages to design surfaces for biomedical implants. As the anodized voltage from 50 V to 350 V was applied, the microstructure of the coating shifted from regular TiO2 nanotubes to heterostructured TiO2 nanopores/nanotubes. In addition, the dimension of the heterostructured TiO2 nanopores/nanotubes was a function of voltage. The electrochemical characteristics of TiO2 nanotubes and heterostructured TiO2 nanopores/nanotubes were evaluated in simulated body fluid (SBF) solution. The creation of heterostructured TiO2 nanopores/nanotubes on Ti substrates resulted in a significant increase in BHK cell attachment compared to that of the Ti substrates and the TiO2 nanotubes.

Keywords: anodizing; biomaterials; cell attachment; corrosion rate.