Metal-free carbon-based electrocatalysts have gained significant attention in the field of zinc-air batteries (ZABs) due to their affordability, good conductivity and chemical stability. However, unmodified carbon materials typically fall short in adsorbing and activating the substrates and intermediates involved in oxygen reduction reactions (ORR). Here, a metal-free carbon-based electrocatalyst with S atom p orbital hybrid modified N-sp3/sp2 carbon structure (C/NS) were prepared by cyclodextrins inclusion. The catalyst demonstrates impressive ORR activity (E1/2=0.885 V vs. RHE) and robust ZABs performance with a power density of 171.3 mW cm-2 and a specific capacity of 781.2 mAh g-1. Density functional theory (DFT) calculation reveals that S atom effectively regulates the charge distribution and p-band center of active site carbon atom in the N-sp3/sp2 carbon structure. This modification prompts the adsorption and dissociation of O2 and intermediates, resulting in higher reactive activity. This work provides a valuable and practical strategy for preparing cost-effective metal-free carbon-based electrocatalysts for ORR with high performance.
Keywords: Inclusion strategy; Metal-free; Oxygen reduction reaction; Zinc-air battery.
© 2024 Wiley-VCH GmbH.