Oscillating neural circuits: Phase, amplitude, and the complex normal distribution

Can J Stat. 2023 Sep;51(3):824-851. doi: 10.1002/cjs.11790. Epub 2023 Jul 22.

Abstract

Multiple oscillating time series are typically analyzed in the frequency domain, where coherence is usually said to represent the magnitude of the correlation between two signals at a particular frequency. The correlation being referenced is complex-valued and is similar to the real-valued Pearson correlation in some ways but not others. We discuss the dependence among oscillating series in the context of the multivariate complex normal distribution, which plays a role for vectors of complex random variables analogous to the usual multivariate normal distribution for vectors of real-valued random variables. We emphasize special cases that are valuable for the neural data we are interested in and provide new variations on existing results. We then introduce a complex latent variable model for narrowly band-pass-filtered signals at some frequency, and show that the resulting maximum likelihood estimate produces a latent coherence that is equivalent to the magnitude of the complex canonical correlation at the given frequency. We also derive an equivalence between partial coherence and the magnitude of complex partial correlation, at a given frequency. Our theoretical framework leads to interpretable results for an interesting multivariate dataset from the Allen Institute for Brain Science.

Les séries temporelles à oscillations multiples sont généralement étudiées dans le domaine fréquentiel, où la cohérence est souvent considérée comme l’amplitude de la corrélation entre deux signaux à une fréquence spécifique. Cette corrélation est à valeurs complexes et présente des similitudes avec la corrélation de Pearson pour les valeurs réelles, tout en présentant des différences distinctes. Dans cette étude, les auteurs explorent la dépendance entre les séries oscillantes en utilisant la distribution normale complexe multivariée. Cette distribution est l’équivalent de la distribution normale multivariée classique, mais adaptée aux vecteurs de variables aléatoires complexes plutôt qu’aux vecteurs de variables aléatoires réelles. Les auteurs mettent l’accent sur des cas spécifiques qui revêtent une importance particulière pour les données neuronales qui les intéressent, tout en proposant de nouvelles approches et des variations des résultats existants. Ils introduisent un modèle de variables latentes complexes pour les signaux filtrés en bande passante étroite à une fréquence donnée. Ils démontrent ensuite que l’estimation du maximum de vraisemblance dans ce modèle produit une cohérence latente équivalente à l’amplitude de la corrélation canonique complexe à la fréquence spécifiée. Ils établissent également une équivalence entre la cohérence partielle et l’amplitude de la corrélation partielle complexe, toujours à une fréquence donnée. Leur approche théorique conduit à des résultats interprétables pour un ensemble de données multivariées intéressant provenant de l’Allen Institute for Brain Science.

Keywords: Coherence; Primary 62H20; Secondary 62P10; complex normal distribution; latent variable model; oscillations.