The presence of metal objects leads to corrupted CT projection measurements, resulting in metal artifacts in the reconstructed CT images. AI promises to offer improved solutions to estimate missing sinogram data for metal artifact reduction (MAR), as previously shown with convolutional neural networks (CNNs) and generative adversarial networks (GANs). Recently, denoising diffusion probabilistic models (DDPM) have shown great promise in image generation tasks, potentially outperforming GANs. In this study, a DDPM-based approach is proposed for inpainting of missing sinogram data for improved MAR. The proposed model is unconditionally trained, free from information on metal objects, which can potentially enhance its generalization capabilities across different types of metal implants compared to conditionally trained approaches. The performance of the proposed technique was evaluated and compared to the state-of-the-art normalized MAR (NMAR) approach as well as to CNN-based and GAN-based MAR approaches. The DDPM-based approach provided significantly higher SSIM and PSNR, as compared to NMAR (SSIM: p [Formula: see text]; PSNR: p [Formula: see text]), the CNN (SSIM: p [Formula: see text]; PSNR: p [Formula: see text]) and the GAN (SSIM: p [Formula: see text]; PSNR: p <0.05) methods. The DDPM-MAR technique was further evaluated based on clinically relevant image quality metrics on clinical CT images with virtually introduced metal objects and metal artifacts, demonstrating superior quality relative to the other three models. In general, the AI-based techniques showed improved MAR performance compared to the non-AI-based NMAR approach. The proposed methodology shows promise in enhancing the effectiveness of MAR, and therefore improving the diagnostic accuracy of CT.