Predictive modeling for identification of older adults with high utilization of health and social services

Scand J Prim Health Care. 2024 Dec;42(4):609-616. doi: 10.1080/02813432.2024.2372297. Epub 2024 Jul 3.

Abstract

Aim: Machine learning techniques have demonstrated success in predictive modeling across various clinical cases. However, few studies have considered predicting the use of multisectoral health and social services among older adults. This research aims to utilize machine learning models to detect high-risk groups of excessive health and social services utilization at early stage, facilitating the implementation of preventive interventions.

Methods: We used pseudonymized data covering a four-year period and including information on a total of 33,374 senior citizens from Southern Finland. The endpoint was defined based on the occurrence of unplanned healthcare visits and the total number of different services used. Input features included individual's basic demographics, health status and past usage of healthcare resources. Logistic regression and eXtreme Gradient Boosting (XGBoost) methods were used for binary classification, with the dataset split into 70% training and 30% testing sets.

Results: Subgroup-based results mirrored trends observed in the full cohort, with age and certain health issues, e.g. mental health, emerging as positive predictors for high service utilization. Conversely, hospital stay and urban residence were associated with decreased risk. The models achieved a classification performance (AUC) of 0.61 for the full cohort and varying in the range of 0.55-0.62 for the subgroups.

Conclusions: Predictive models offer potential for predicting future high service utilization in the older adult population. Achieving high classification performance remains challenging due to diverse contributing factors. We anticipate that classification performance could be increased by including features based on additional data categories such as socio-economic data.

Keywords: Machine learning; health and social services usage; older adults; predictive modeling; secondary use of data.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Female
  • Finland
  • Health Services / statistics & numerical data
  • Health Status
  • Humans
  • Logistic Models
  • Machine Learning*
  • Male
  • Mental Health
  • Patient Acceptance of Health Care
  • Social Work*

Grants and funding

The study was funded by the Ministry of Social Affairs and Health and VTT Technical Research Centre of Finland Ltd.