Identification and expression analysis of Sox family genes in echinoderms

BMC Genomics. 2024 Jul 1;25(1):655. doi: 10.1186/s12864-024-10547-0.

Abstract

The Sox gene family, a collection of transcription factors widely distributed throughout the animal kingdom, plays a crucial role in numerous developmental processes. Echinoderms occupy a pivotal position in many research fields, such as neuroscience, sex determination and differentiation, and embryonic development. However, to date, no comprehensive study has been conducted to characterize and analyze Sox genes in echinoderms. In the present study, the evolution and expression of Sox family genes across 11 echinoderms were analyzed using bioinformatics methods. The results revealed a total of 70 Sox genes, with counts ranging from 5 to 8 across different echinoderms. Phylogenetic analysis revealed that the identified Sox genes could be categorized into seven distinct classes: the SoxB1 class, SoxB2 class, SoxC class, SoxD class, SoxE class, SoxF class and SoxH class. Notably, the SoxB1, SoxB2, and SoxF genes were ubiquitously present in all the echinoderms studied, which suggests that these genes may be conserved in echinoderms. The spatiotemporal expression patterns observed for Sox genes in the three echinoderms indicated that various Sox members perform distinct functional roles. Notably, SoxB1 is likely involved in echinoderm ovary development, while SoxH may play a crucial role in testis development in starfish and sea cucumber. In general, the present investigation provides a molecular foundation for exploring the Sox gene in echinoderms, providing a valuable resource for future phylogenetic and genomic studies.

Keywords: Echinoderm; Expression; Identification; Phylogeny; Sox.

MeSH terms

  • Animals
  • Computational Biology / methods
  • Echinodermata* / genetics
  • Evolution, Molecular
  • Gene Expression Profiling
  • Gene Expression Regulation, Developmental
  • Multigene Family*
  • Phylogeny*
  • SOX Transcription Factors* / genetics
  • SOX Transcription Factors* / metabolism

Substances

  • SOX Transcription Factors