Unveiling the regulatory network controlling natural transformation in lactococci

PLoS Genet. 2024 Jul 1;20(7):e1011340. doi: 10.1371/journal.pgen.1011340. eCollection 2024 Jul.

Abstract

Lactococcus lactis is a lactic acid bacterium of major importance for food fermentation and biotechnological applications. The ability to manipulate its genome quickly and easily through competence for DNA transformation would accelerate its general use as a platform for a variety of applications. Natural transformation in this species requires the activation of the master regulator ComX. However, the growth conditions that lead to spontaneous transformation, as well as the regulators that control ComX production, are unknown. Here, we identified the carbon source, nitrogen supply, and pH as key factors controlling competence development in this species. Notably, we showed that these conditions are sensed by three global regulators (i.e., CcpA, CodY, and CovR), which repress comX transcription directly. Furthermore, our systematic inactivation of known signaling systems suggests that classical pheromone-sensing regulators are not involved. Finally, we revealed that the ComX-degrading MecA-ClpCP machinery plays a predominant role based on the identification of a single amino-acid substitution in the adaptor protein MecA of a highly transformable strain. Contrasting with closely-related streptococci, the master competence regulator in L. lactis is regulated both proximally by general sensors and distantly by the Clp degradation machinery. This study not only highlights the diversity of regulatory networks for competence control in Gram-positive bacteria, but it also paves the way for the use of natural transformation as a tool to manipulate this biotechnologically important bacterium.

MeSH terms

  • Bacterial Proteins* / genetics
  • Bacterial Proteins* / metabolism
  • DNA Transformation Competence / genetics
  • Gene Expression Regulation, Bacterial*
  • Gene Regulatory Networks*
  • Lactococcus / genetics
  • Lactococcus lactis* / genetics
  • Lactococcus lactis* / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism
  • Transformation, Bacterial / genetics

Substances

  • Bacterial Proteins
  • Transcription Factors

Grants and funding

This study was funded by IFF-Danisco France SAS (https://bioscience.iff.com/; funds allocated to Pa.H). This work was also supported by the PDR grant T.0110.18 (awarded to Pa.H) from the Belgian National Fund for Scientific Research (FNRS, https://www.frs-fnrs.be/en/) and the Concerted Research Actions (ARC) grant 17/22-084 (awarded to Pa.H) from Federation Wallonia-Brussels (FWB, http://www.recherchescientifique.be/). The funders had no role in study design, data collection and analysis, or preparation of the manuscript. The authors declare that IFF-Danisco France SAS as main funder authorized the publication of this work.