Lacticaseibacillus rhamnosus CRL 2244 secreted metabolites display killing and antibiotic synergistic activity against multi-drug resistant pathogens

PLoS One. 2024 Jun 28;19(6):e0306273. doi: 10.1371/journal.pone.0306273. eCollection 2024.

Abstract

A growing increase in the number of serious infections caused by multidrug resistant bacteria (MDR) is challenging our society. Despite efforts to discover novel therapeutic options, few antibiotics targeting MDR have been approved by the Food and Drug Administration (FDA). Lactic acid bacteria have emerged as a promising therapeutic alternative due to their demonstrated ability to combat MDR pathogens in vitro. Our previous co-culture studies showed Lacticaseibacillus rhamnosus CRL 2244 as having a potent killing effect against carbapenem-resistant Acinetobacter baumannii (CRAB) strains. Here we report that cell-free conditioned media (CFCM) samples obtained from Lcb. rhamnosus CRL 2244 cultures incubated at different times display antimicrobial activity against 43 different pathogens, including CRAB, methicillin-resistant Staphylococcus aureus (MRSA) and carbapenemase Klebsiella pneumoniae (KPC)-positive strains. Furthermore, transwell and ultrafiltration analyses together with physical and chemical/biochemical tests showed that Lcb. rhamnosus CRL 2244 secretes a <3 kDa metabolite(s) whose antimicrobial activity is not significantly impaired by mild changes in pH, temperature and various enzymatic treatments. Furthermore, sensitivity and time-kill assays showed that the bactericidal activity of the Lcb. rhamnosus CRL 2244 metabolite(s) enhances the activity of some current FDA approved antibiotics. We hypothesize that this observation could be due to the effects of Lcb. rhamnosus CRL 2244 metabolite(s) on cell morphology and the enhanced transcriptional expression of genes coding for the phenylacetate (PAA) and histidine catabolic Hut pathways, metal acquisition and biofilm formation, all of which are associated with bacterial virulence. Interestingly, the extracellular presence of Lcb. rhamnosus CRL 2244 induced the transcription of the gene coding for the CidA/LgrA protein, which is involved in programmed cell death in some bacteria. Overall, the findings presented in this report underscore the promising potential of the compound(s) released by Lcb. rhamnosus CRL2244 as an alternative and/or complementary option to treat infections caused by A. baumannii as well as other MDR bacterial pathogens.

MeSH terms

  • Acinetobacter baumannii / drug effects
  • Anti-Bacterial Agents* / pharmacology
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Culture Media, Conditioned / pharmacology
  • Drug Resistance, Multiple, Bacterial* / drug effects
  • Drug Synergism
  • Lacticaseibacillus rhamnosus* / genetics
  • Lacticaseibacillus rhamnosus* / metabolism
  • Methicillin-Resistant Staphylococcus aureus / drug effects
  • Microbial Sensitivity Tests

Substances

  • Anti-Bacterial Agents
  • Culture Media, Conditioned
  • Bacterial Proteins

Grants and funding

NIH SC3GM125556 to MSR, R01AI100560, R01AI063517, R01AI072219 to RAB; PICT2018-03233 to RR and PIP 2020-817 and PICT 2021-00458 to CR. This study was supported in part by funds and/or facilities provided by the Cleveland Department of Veterans Affairs, Award Number 1I01BX001974 to RAB from the Biomedical Laboratory Research & Development Service of the VA Office of Research and Development and the Geriatric Research Education and Clinical Center VISN 10 to RAB. There was no additional external funding received for this study.