Background: Blurry images in teledermatology and consultation increased the diagnostic difficulty for both deep learning models and physicians. We aim to determine the extent of restoration in diagnostic accuracy after blurry images are deblurred by deep learning models. Methods: We used 19,191 skin images from a public skin image dataset that includes 23 skin disease categories, 54 skin images from a public dataset of blurry skin images, and 53 blurry dermatology consultation photos in a medical center to compare the diagnosis accuracy of trained diagnostic deep learning models and subjective sharpness between blurry and deblurred images. We evaluated five different deblurring models, including models for motion blur, Gaussian blur, Bokeh blur, mixed slight blur, and mixed strong blur. Main Outcomes and Measures: Diagnostic accuracy was measured as sensitivity and precision of correct model prediction of the skin disease category. Sharpness rating was performed by board-certified dermatologists on a 4-point scale, with 4 being the highest image clarity. Results: The sensitivity of diagnostic models dropped 0.15 and 0.22 on slightly and strongly blurred images, respectively, and deblurring models restored 0.14 and 0.17 for each group. The sharpness ratings perceived by dermatologists improved from 1.87 to 2.51 after deblurring. Activation maps showed the focus of diagnostic models was compromised by the blurriness but was restored after deblurring. Conclusions: Deep learning models can restore the diagnostic accuracy of diagnostic models for blurry images and increase image sharpness perceived by dermatologists. The model can be incorporated into teledermatology to help the diagnosis of blurry images.
Keywords: artificial intelligence; deblurring; deep learning; medical informatics; teledermatology; telemedicine.